Department of Physics #### Lesson Plan Session: 2021-22(Odd Semester) Program B.Sc. Semester: V Name of the Course Classical Dynamics Course Code: BSP-503(A) Name of the Faculty: Devashree Borgohain | Unit | Topic | Targeted No. of classes | Tentative
Schedule
(DoC-DoE) | Tentative
Pedagogy | Unit Allotted for
Sessional Test | Remarks | |--------|--|-------------------------|------------------------------------|--|-------------------------------------|--| | Unit 1 | Classical mechanics of point particles | 14 | 20/09/2021
to
12//11/2021 | One to one communication, Assignment and homework was given, NPTEL lectures will also be provided to the students, Class test will also be conducted after completion of the unit. | Test-I &II | This paper is
shared Dr.
Enamullah | | Unit 2 | Canonical
transformation | 20 | 13/11/2021
to
11/12/2021 | One to one communication, Assignment and homework was given, NPTEL lectures will also be provided to the students, Class test will also be conducted after completion of the unit. | Test III | | #### Suggested Books: - 1. Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education. - 2. Classical Mechanics, J C Upadhyaya - 3. Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon. - 4. Classical Electrodynamics, J.D. Jackson, 3rd Edn., 1998, Wiley. - 5. The Classical Theory of Fields, L.D Landau, E.M Lifshitz, 4th Edn., 2003, Elsevier. - 6. Introduction to Electrodynamics, D.J. Griffiths, 2012, Pearson Education. - 7. Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer. - 8. Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press Approved by HoD Signature of the Faculty Deventue Adaptain #### **Department of Physics** #### Lesson Plan Session: 2021-22(Odd Semester) Program: B.Sc. Semester: V Name of the Course: Advanced Mathematical Physics Course Code: BSP-504(B) Name of the Faculty: Devashree Borgohain | Unit | Topic | Targeted No. of classes | Tentative
Schedule
(DoC-DoE) | Tentative
Pedagogy | Unit Allotted for
Sessional Test | Remarks | |--------|-----------------------|-------------------------|------------------------------------|--|-------------------------------------|---| | Unit 1 | Matrix | 12 | 20/09/2021
to
10/11/2021 | One to one communication, Assignment and homework was given, NPTEL lectures will also be provided to the students, Class test will also be conducted after completion of the unit. | Test-I | This paper is
shared Dr.
Mayuri Devee | | Unit 3 | Calculus of variation | 20 | 12/11/2021
to
11/12/2021 | One to one communication, Assignment and homework was given, NPTEL lectures will also be provided to the students, Class test will also be conducted after completion of the unit. | Test II & III | | #### Suggested Books: 1. Mathematical Methods for Physicists: George B. Arfken and Hans J. Weber 2. Mathematical Physics: B. D. Gupta 3. Mathematical Physics: H. K. Dass 4. Mathematical Physics: Satya Prakash 5. Mathematical Methods for Physicists: Tai L. Chow Approved by HoD Divibility by Minister Signature of the Faculty #### **Department of Physics** #### Lesson Plan Session: 2021-22(Odd Semester) Program BSC Semester: III Name of the Course Mathematical Physics II Course Code: BSP-301 Name of the Faculty: Devashree Borgohain | Unit | Topic | Targeted
No. of
classes | Tentative
Schedule
(DoC-DoE) | Tentative Pedagogy | Unit Allotted for
Sessional Test | Remarks | |--------|---|-------------------------------|------------------------------------|--|-------------------------------------|---------| | Unit 1 | Matrix | 16 | 20/09/2021 to
12/10/2021 | One to one communication, Assignment and homework was given, NPTEL lectures will also be provided to the students, Class test will also be conducted after completion of the unit. | | | | Unit-2 | Frobenius Method
and Special
Function | 10 | 13/10/2021 to
26/10/2021 | One to one communication, Assignment and homework was given, NPTEL lectures will also be provided to the students, Class test will also be conducted after completion of the unit. | Test-I | | | Unit 3 | Some special integral | 14 | 27/10/2021 to
19/11/2021 | One to one communication, Assignment and homework was given, NPTEL lectures will also be provided to the students, Class test will also be conducted after completion of the unit. | Test-II | | |--------|--------------------------------------|----|-----------------------------|--|---------|--| | Unit 4 | Partial
differential
equations | 10 | 20/11/2021 to
10/12/2021 | One to one communication, Assignment and homework was given, NPTEL lectures will also be provided to the students, Class test will also be conducted after completion of the unit. | | | #### Suggested Books: 1. Mathematical Methods for Physicists: George B. Arfken and Hans J. Weber 2. Mathematical Physics: B. D. Gupta 3. Mathematical Physics: H. K. Dass 4. Mathematical Physics: Satya Prakash 5. Mathematical Methods for Physicists : Tai L. Chow Approved by H₀D Signature of the Faculty Devedace Borgolain # University of Science & Technology Meghalaya Department of Physics ### Lesson Plan Session: 2020-21(Odd Semester) Program: BSc Semester:III rd Name of the Course: Basic Instruentation skills Course Code: BSP 306 Name of the Faculty: Dr. Sanchita Roy Details Plan | Unit | Topic | No. of classes | Tentative
Schedule
(DoC-DoE) | Tentative Pedagogy | Unit Allotted for
Sessional Test | Remarks | |------|--|----------------|------------------------------------|---|-------------------------------------|---| | 1, | Basic of measurement | 6 | 21/09/2021-
06/10/2021 | Following Bloom's taxonomy to conduct Online classes/ Assignments/ Class tests etc. | Test-I | | | 2. | Electronic
voltmeter | 4 | 12/10/2021
20/10/2021 | Following Bloom's taxonomy to conduct Online classes/ Assignments/ Class tests etc. | Test-II | Sessional I
test will be
conducted till
this unit | | 3. | Cathode ray oscilloscope | 6 | 26/10/2021 to
10/11/2021 | Following Bloom's taxonomy to conduct Online classes/ Assignments/ Class tests etc. | | Sessional I
Itest will be
conducted till
this unit | | 4. | Specifications of
a CRO and their
significance | 5 | 16/11/2021 to
30/11/ 2021 | Following Bloom's taxonomy to conduct Online classes/ Assignments/ Class tests etc. | | Sessional II
test will be
conducted till
this unit | | 5. | Signal generators
and their analysis
instruments | 4 | 01/12/2021 till
15/12/ 2021 | Following Bloom's taxonomy to conduct Online classes/ Assignments/ Class tests etc. | | Till low
frequency
signal
generators,
included in
sessional II
test | #### Suggested Books: Digital circuits and systems, by Venugopal, Tata Mcgrawhills Digital electronics by Subrata Ghoshal, Cengage learning Electroic devices by Thomas L. Floyd, Pearsonn India, 2008. Ser S Dr.Sanchita Roy Approved by HoD Signature of the Faculty #### **Department of Physics** #### Lesson Plan Session: 2021-2022(Odd Semester) Program: B.Sc. Semester:III Name of the Course: Digital Systems and Applications CourseCode: BSP-303 Name of the Faculty: Dr. H.P. Jaishi | Unit | Topic | Targeted
No. of
classes | Tentative Schedule Unit wise (DoC-DoE) | Tentative Pedagogy | Unit Allotted
for Sessional
Test | Remarks | |------|---|-------------------------------|--|---|--|---------| | 1 | Difference between analog and digital circuits, binary numbers, decimal to binary and binary to decimal conversion, BCD, octal and hexadecimal numbers. | 5 | 20/09/2021-
27/09/2021 | Lecture, Demonstrating with suitable examples, Classroom discussion, Student presentation, assignment | Test-I
Unit 1 | | | 1 | De Morgan's theorems, Boolean laws, simplification of logic circuit using Boolean algebra, fundamental products. | 4 | 28/09/2021-
01/10/2021 | Lecture, Demonstrating with suitable examples, Classroom discussion, Student presentation, assignment | | | | 1 | Binary addition, binary subtraction using 2's complement, AND, OR and NOT gates (realization using diodes and transistor), NAND and NOR gates as universal gates, XOR and XNOR gates. | 7 | 04/10/2021-
19/10/2021 | Lecture, Demonstrating with suitable examples, Classroom discussion, Student presentation, assignment | e a | | | 2 | Sequential Circuits:
SR, D, JK and T-
Flip Flops | 7 | 20/10/2021-
01/11/2021 | Lecture, Demonstrating with suitable examples, Classroom discussion, Student presentation, assignment | Test-II
Unit 2 | | | 2 | Combinational Circuits: Encoder, | 7 | 02/11/2021-
15/11/2021 | Lecture, Demonstrating with | | | | | | Decoder, MUX and DEMUX | | | suitable examples,
Classroom | | | |-----|---|---|----|---------------------------|---|--------------------|---| | | | | | | discussion, Student presentation, assignment | | - | | 200 | 3 | IC- 555 TIMER: Basic timing circuit, Astable and Monostable mode of operation and applications | 10 | 16/11/2021-
01/12/2021 | Lecture, Demonstrating with suitable examples, Classroom discussion, Student presentation, assignment | Test-III
Unit 3 | | | 0 | 3 | -CRO: Working and-Application | -2 | 02/12/2021-
06/12/2021 | Lecture, Demonstrating with suitable examples, Classroom discussion, Student presentation, assignment | , | | | | 4 | Integrated Circuit: active & passive components. discrete components, wafer, chip, advantages and drawbacks of ICs | 7 | 07/12/2021-
16/12/2021 | Lecture, Demonstrating with suitable examples, Classroom discussion, Student presentation, assignment | | | | | 4 | Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only), classification of ICs, examples of linear and digital ICs, introduction to microprocessors. | 7 | 20/12/2021-
29/12/2021 | Lecture, Demonstrating with suitable examples, Classroom discussion, Student presentation, assignment | | | #### Suggested Books/Reference Books: - Digital Fundamentals by Thomas L. Floyd - Digital Design: With an Introduction to the Verilog Hdl by M. Morris Mano and Michael D. Ciletti. - 3. Digital Circuits and Design by Arivazhagan S and S. Salivahanan. - Modern Digital Electronicsby R.P. Jain - 5. Fundamentals of Digital Circuits by A. Anand Kumar - 6. 2000 Solved Problems in Digital Electronics by S. Bali Approved byHoD ## **LESSON PLAN** Program: Bachelor of Science Course code: BSP- 302 Course Title: Thermal Physics Course Credit: 04 Faculty Name: Dr. Ritun Chakraborty Department: Physics | Sl. No. | Units | Topic | No. of proposed classes | Comments | |---------|----------|---|-------------------------|----------| | 1 | 1 | Introduction to Thermodynamics | 16 | | | 2 | 2 | Entropy | 14 | | | 3 | 2 | Thermodynamic Potentials | | | | 4 | 3 | Maxwell's
Thermodynamic
Relations | 14 | | | 5 | 3 | Kinetic Theory of Gases | | | | 6 | 3 | Molecular
Collisions | | | | 7 | 4 | Real Gases | 10 | | Name and signature of the faculty Signature of the HoD ## LESSON PLAN Program: Master Of Science Course code: MSP-304(A) Coursetitle: Condensed Matter Physics-ICoursecredit: 04 Faculty Name: Dr. Ritun Chakraborty Department: Physics | SI. No. | Units | Topic | No. of proposed classes | Comments | |---------|-------|------------------------------|-------------------------|------------------------| | 01 | 2 | Optical properties of solids | 10 | This course is shared. | | 02 | 3 | Superconductivity | 12 | Sharea. | | 03 | 4 | Critical
Phenomena | 13 | | Name and signature of the faculty Signature of the HoD ## **LESSON PLAN** Program: Bachelor of ScienceCourse code: BSP-502 CourseTitle: Solid State PhysicsCourseCredit: 04 Faculty Name: Dr. Ritun Chakraborty Department: Physics | Sl. No. | Units | Topic | No. of proposed classes | Comments | |---------|-------|------------------------------------|-------------------------|--------------------------| | 01 | 1 | Crystal structure of solids | 10 | This is a shared course. | | 02 | 2 | Elementary lattice dynamics' | 8 | Course. | | 03 | 3 | Magnetic properties of matter | 10 | | | 03 | 4 | Dielectric properties of materials | 6 | | | 04 | 6 | Superconductivity | 4 | | Name and signature of the faculty Signature of the HoD