Department of Physics Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and Course Outcomes (COs)

Master of Science in Physics

Programme Outcomes (POs)

Programme	Programme Title	Programme Specific Outcome
Code		
MSP	Master of Science in Physics	 The curriculum for master's degree course is designed to equip the students with advanced knowledge in several areas of physics. To achieve this specific object, various subjects like mathematical physics, quantum mechanics, classical mechanics, electronics, plasma physics, computational physics, atomic and molecular physics, condensed matter physics, statistical physics, general theory of relativity and astrophysics have been included in the syllabus. The department also offers elective papers in condensed matter physics, electronics and communication technology, advanced high energy physics and advanced laser and nonlinear optics. The syllabus for master degree courses is also developed on the basis of UGC model syllabus and at par with IIT and central university curricula. After completing a four-semester master degree course in physics, a student will be adequately knowledge for a career in physics or in a related field in academia, industry and research laboratories. Programme Outcomes (POs): After due completion of the programme students will be able to PO 1. Apply the knowledge of principles and concepts of physics to solve practical problems. PO 2. Employ numerical methods and interpret mathematical models of physical problems. PO 3. Develop skills to design, plane and execute experiments and interpret the results. PO 4. Develop communication skills to impart the knowledge to the both specialized and non-specialized public, with an emphasis towards societal development.

Programme Specific Outcome (PSO)

Programme Code	Programme Title	Programme Specific Outcome
MSP	Master of Science in Physics	 Programme Specific Outcomes (PSOs): At the end of the programme the students will be specifically able to PSO 1. Understand the concepts of physics, particularly in Classical Mechanics, Quantum Mechanics, Electronics, Electromagnetism, Atomic, Molecular and Laser physics, Nuclear Physics etc. and impart the knowledge how the fundamental laws of nature are realized. PSO 2. Gain the knowledge of certain advanced subjects such as Condensed Matter Physics, High Energy Physics, Astro and Particle Physics, Laser and Nonlinear Optics etc. PSO 3. Learn to carry out hands on experiments related to the subjects cited above and develop the skills to operate advance machineries. PSO 4. Develop the knowledge to identify cutting edge research problems and also develop methodologies to solve them.

Course Outcomes (COs) M.Sc. Physics

Paper	Title of the Paper	Course Outcomes (COs)	
Code		Upon successful completion of the courses student will have the	
		knowledge and skills to	
MSP-101	Mathematical Physics-I	 The students will be able to understand and apply the mathematical skills to solve quantitative problems in the study of physics. Learn about special type of matrices that are relevant in physics. Will enable students to apply integral transform to solve mathematical problems of interest in physics. Learn the fundamentals and applications of Fourier series, Fourier and Laplace transforms, their inverse transforms etc as an aid for analyzing experimental data. The students will be able to formulate and express a physical law in terms of tensors, and simplify it by use of coordinate transforms. Get introduced to Special functions like Gamma function, Beta function, Delta function, Dirac delta function, Bessel functions and their recurrence relations. Learn different ways of solving second order differential equations. 	
MSP-102	Classical Mechanics	 Students will know concept of classical mechanics . Understand the foundations of chaotic motion. 	

	-		
		3.	Deep knowledge on lagrangian dynamics& Hamiltonian
			dynamics.
		4. 5	Know the theory of small oscillation. Brief knowledge on fluid motion
		<u> </u>	Aspects of historical developments of quantum mechanics
		1.	and interpretation of wave particle duality
		2.	Development of central concept and principles of
			quantum mechanics such as Schrödinger equation, wave
			functions, and its statistical interpretation
MSP-103	Quantum Mechanics - I	3.	Solution of Schrödinger equation for simple systems in
		4	one and three dimensions
		4.	and uncertainty of quantum systems
		5	Knowledge of angular momentum spin and their rules for
		5.	quantization.
		1.	Understand the basic knowledge of various semiconductor
			devices such as BJT, FET and MOSFET.
		2.	Acquire knowledge on Operational Amplifier and its
			applications.
	Electronics	3.	Know the building blocks of digital systems and the logic
MSP-104			families.
		4.	Analyze the transmission of multiple signals through
		_	different modulation techniques.
		5.	Develop knowledge on signal transmission through different
			antenna types.
		1.	To develop knowledge of semiconductor and their
			properties through hands on practice
		2.	Physics of propagation of ultrasonic through liquid, ideas
		2	of ultrasonography used in medical science.
MSP-105	Physics Laboratory-I	5.	wavelength usability of LASERs in different domains of
			engineering and Technology
		4.	Knowledge of rectifiers and amplifiers and their
			fabrication for operations etc.
		5.	Know to calculate the specific charge of an electron.
		1.	Will gain a clear understanding of Maxwell's equations
	Electromagnetics & Plasma Physics	2	and electromagnetic boundary conditions.
		۷.	classical electrodynamics using Maxwell's equations
		3	Know that laws of reflection refraction are outcomes of
		5.	electromagnetic boundary conditions.
MSP-201		4.	Students will grasp the idea of electromagnetic wave
			propagation through wave guides and transmission lines.
		5.	The students will be able to analyze s radiation systems
			in which the electric dipole, magnetic dipole or electric
			quadrupie dominate.
		6.	The students will have an understanding of the
			concept of retarded time for charges undergoing
			acceleration
		7	Students will extend their understanding of special theory
			of relativity by including the relativistic electrodynamics.

		8. Understand the rather complex physical phenomena
		observed in plasma.
		1. Students will have deep knowledge on computer
		2 Various methods to solve numerical problems
MSP-202	Computational Physics	3. Learn to find the solution of linear and non linear systems.
		4. Learn to find the roots of different equation by using Newton
		Raphson and bisection method.
		1. Learn about crystalline state of solids and X-ray diffraction
		2. Learn about various types of crystal bonding and lattice
	Condensed Matter Physics	dynamics 2 Learn about dialactric properties of solids
MSP-203		4 Learn about energy bands in solids and free electron theory of
		metals
		5. Learn about magnetic properties and various aspects of
		semiconductors
		On successful completion of the course the students will be able
		to-
		1. Know about the emission and absorption spectra of the
		atoms.
		2. Would know about the different energy levels in atoms
MCD 204	Atomic, Molecular and	and various coupling schemes.
M3F-204	laser Physics	3. Understand about the spectra of molecules
		4. Would know the Born-Oppenheimer approximation and
		its application on molecular spectroscopy.
		5 Understand laser and its properties different types of
		Lasers applications of Lasers
		1. Learn the skill to measure the wavelength of a given laser by
		using Michelson's Interferometer.
		2. Will be able to verify Heisenberg's uncertainty principle using
	Physics Laboratory-II	3 Will get the knowledge to find the value of Plank's constant and
		photoelectric wave function of the material of the cathode
		using photoelectric cell.
		4. Will be able to analyze the B-H curve for a given ferromagnetic
		material using CRO and determine the loss of energy due to
MSP-205		hysteresis.
		5. Understand the concept of dielectric constant and hence able
		dielectric materials.
		6. Learn to measure the numerical aperture and propagation loss
		in an optical fiber using He-Ne laser source.
		7. Learn the technique to measure the wavelength separation of
		sodium D-lines using a diffraction grating.
		8. Will be able to study the I-V characteristics of a solar cell.
		Learn the basic of C programming which includes the following
MSP-206	Computational Physics Practical	points
		1. Students will be able to write the Computer languages(C,
		C++).
		2. Will be able to write the programs of the numerical

		problems.
		3. Know to use the concept of array in programming.
		4. String and string manipulative function in programming.
		1. Understand the basics of group theory and its applications.
		2. Have a detail understanding of Special functions and
	Mathematical Physics - II	polynomials.
MCD 201		3. Learn the mathematical technique to solve integral
M31-301		equations.
		4. Learn to apply Path integral method to various physics
		problems.
		5. Understand the basic concept of Linear Algebra.
		1. Describe model physical system using common
		approximation approaches for dynamical calculations
		2. Explain the relativistic quantum mechanical equations,
MSP-302	Quantum Mechanics - II	namely, Klein-Gordon equation and Dirac equation
		3. Describe second quantization and related concepts.
		4. Explain the formalism of relativistic quantum field theory.
		5. Draw and explain Feynman graphs for different
		Interactions
		1. Students will have a basic knowledge of nuclear size,
		shape, binungenergy.etc and also the characteristics of
		The students will have an understanding of the nuclear
		2. The students will have an understanding of the , nuclear docay modes radioactive docay and the interaction of
		nuclear radiation with matter, and develop an insight into
		the huilding block of matter along with the fundamental
		interactions of nature
MSP-303	Nuclear Physics	3 Will be able to gain knowledge about various nuclear
101 505	Nuclear Filysics	models and notentials associated
		4. Grasp knowledge about Nuclear reactions. Fission and
		Fusion and their characteristics.
		5. To provide broad understanding of basic experimental
		nuclear-detection techniques.
		6. Understand the basic forces in nature and classification of
		particles and study in detail conservations laws and quark
		models in detail.
		1. Learn about advanced electrical properties of solids
	Elective: Condensed Matter Physics-I	2. Learn about advanced magnetic properties of solids
MSP-304(A)		3. Learn about advanced optical properties of solids
		4. Learn about superconductivity
		5. Learn about critical phenomena of solids
		1. Understand the basics and principles of analog signal
MSP-304(B)	Elective: Electronics and	transmissions.
		2. Understand the details of AM, FM and PM and the frequency
		spectrum.
		3. Analyze the conversion of analog to digital transmission of
	Communication Technology-I	signals through different digital modulation technique.
	communication reciniology-r	4. Know the important parameters of transmission lines at
		radio frequencies.
		5. Have knowledge on microwave generation and amplification
		through microwave devices
MSP-304(C)	Flective: High Energy Physics	1. Understand the basic forces in nature and classification of
M31-304(C)	Elective. Ingh Ellergy I hysics	particles and study in detail conservations laws and quark

madala in datail	
inouers in uetan.	
2. Understand conceptually the content of the	Standard
Model and the idea of symmetries (el	ectroweak
unification and the Higgs boson only mentioned).
3. Use basic Feynman diagrams to illust	trate the
electromagnetic, weak and strong forces.	
4. Understand conceptually cross	section,
helicity/handedness, width and branching rat	io and be
able to perform calculations of simple particle in	teractions
using the above and basic relativistic energy n	nomentum
formulae.	
5. Understand and use the concept of universality.	C 1
6. Understand conceptually the key aspects	of the
electromagnetic force, illustrating the idea v	Vith basic
calculations of electron-electron scattering and	electron-
positron annihilation.	h
7. Understand conceptually the key aspects of t	ne strong
force, including asymptotic freedom an	u quark
continement, inustrating the ideas with basic ca	hilotion to
of the meson masses and electron-positron anni	mation to
qualks.	tanding of
their designing parameters	tanung of
2 Idea of different types of LASERs their	working
nrinciples and applications	working
Elective: Laser & Nonlinear 3. Development of nonlinear optics and its advan	tages over
MSP-304(D) Optics-I linear counterpart	
4. Knowledge of different nonlinear optical	effects or
phenomena and their applications	
5. Spectroscopic aspects of nonlinear optics	and its
applications in advanced communications.	
1. Will learn the characteristic of a G. M. counter	and develop
the skill to determine its operating voltage, her	ice verify the
inverse square law for the given radioactive same	nple.
2. Will learn the determination of end point ener	gy of beta
particles by half thickness method by GM Co	unter.
3. Learn the estimation of efficiency of the G.M. de	etector for
(a) Gamma source & (b) Beta Source.	
4. Develop the knowledge to examine the statistic	al
MSP-305 Physics Laboratory-III properties of radiation detection and to show t	hat for
5. Will develop a knowledge to determine the spo	t size and
angle of divergence of a given laser source.	
6. Get the concept of determination of magnetic s	usceptibility
of ferromagnetic substance by Quinck's method	
7. Will acquire the knowledge of determination of	Boltzmann
constant by using Boltzmann Kit.	C +
8. Will get a detail idea of determination of the Land	e g-factor
USING Electroni Spin Resonance.	liminawy
1. Students from other departments will have a pre	miniary
Flements of modern Physics 2 Concents of Hydrogen atom	
MSP-306 (MDC) 3 Know the band theory of solids semiconductors	and
superconductivity	
4. Brief knowledge on Special Theory of Relativity.	

		5. Brief knowledge of LASER Spectroscopy.
		1. Understand the basic concept of statisticical mechanics to
		describe systems containing huge numbers of particles.
		Perform mean field calculations
		2. Know & understand the Fundamental Postulate of
		Equilibrium Statistical Mechanics.
		3. Understand & be able to apply Classical Thermodynamics
MCD 401	Statistical Physics	to simple problems.
M3F-401		4. Understand & be able to apply the Micro-Canonical,
		Canonical, & Grand Canonical Ensembles to appropriate
		physical systems.
		5. Understand the quantum statistical physics of Fermions &
		Bosons.
		6. Be able to apply Fermion & Boson Statistics to various
		many particle systems.
		1. Development of fundamental principles of the general
		theory of relativity.
		2. Meaning of basic concepts like the equivalence principles,
		mention for any new gravity is understood as a
		2 Knowledge on motion in the gravitational field time
		dilation and frequency shifts hending of light
		gravitational waves and cosmological models with
MSP-402	General Theory of Relativity & Astrophysics	expanding space.
		4. Idea of stellar distances and celestial coordinates
		5. Idea of different magnitudes of the stars and their
		calculations
		6. Evolution of the whole universe, formation of galaxies and
		stars
		7. Hertzsprung Russell diagram and stellar demise
		8. The Big Bang cosmological model, and the evidence to
		support it.
		1. Learn about advanced semiconductor physics
	Elective: Condensed Matter Physics-II	2. Learn about p-n junction based devices
MSP-403(A)		5. Learn about physics of thin films
		4. Learn about soft matter physics 5. Learn about different experimental techniques in condensed
		matter physics
		1. Understand the basic concents of electromagnetic waves and
	Elective: Electronics and Communication Technology-II	its propagation in free space.
		2. Know the different parameters, patterns and the types of
		antennas used in communication system
		3 Understand different types of linear beam tubes for
MSP-403(B)		microwave generation
		4 Analyze and calculate the range angle or velocity of objects
		using the RADAR detection technique
		5 Know the different ontoelectronic devices and fiber ontics
		for optical communication.
		F
		1. Be familiar with the limiting procedure of Quantum
MSP-403(C)	Elective: Advanced High Energy Physics	Field Theory and be able to perform simple calculations
		for these phenomena.
		2. Will have a deep understanding of the concept of
		Quantum Chromodynamics in including calculation of

		scattering amplitudes of electron-proton inelastic
		scattering.
		3. Understand concept of electro-weak interaction in detail.
		4. Leaf if about the qualitative as well as qualitative study of
		5 Understand concentually the key aspects of the weak
		force, illustrating the ideas with basic calculations of muon decay and two family neutrino mixing
		6. Understand qualitatively the CKM matrix and its
		7. Know about the questions that the Standard Model does
		not answer or explain, current ideas on possible physics beyond the Standard Model, and current constraints from
		searches for new physics.
		8. Get luca of neutrino oscillation and neutrino mass.
		9. Understand the Dasics concepts of higgs Mechanism, Grand Unified theory and String theory
		10 Know about the current experimental status of High
		Energy Physics.
		1. Idea of LASER induced phenomena like pair excitation,
		LASER cooling etc.
		2. Fundamental importance of LASERs in different domains
		like plasmas, nuclear fusions, atmospheric optics, biology, medical etc.
MSP-403(D)	Elective: Laser & Nonlinear Optics-II	 Knowledge of quantum mechanical treatment of nonlinear optics
		 Third order nonlinearity in different materials and applicability of those materials
		5. Developments of nonlinear fiber optics that
		revolutionalize the communication techniques.
		1. To develop skills in research and methods available,
		towards addressing specific project objectives.
		2. To identify noble research area and carry out literature
		survey.
MSP-404	Project	3. Able to analyse research literatures.
		 Able to learn different software packages depending upon the nature of project
		5. Would be able to design the methods and carry out the
		procedure as per the project.
		6 Able to prepare and present a Research Seminar
		7 Able to produce clear and concise written dissertation